53 research outputs found

    Approaches to analysis with infinitesimals following Robinson, Nelson, and others

    Get PDF
    This is a survey of several approaches to the framework for working with infinitesimals and infinite numbers, originally developed by Abraham Robinson in the 1960s, and their constructive engagement with the Cantor-Dedekind postulate and the Intended Interpretation hypothesis. We highlight some applications including (1) Loeb's approach to the Lebesgue measure, (2) a radically elementary approach to the vibrating string, (3) true infinitesimal differential geometry. We explore the relation of Robinson's and related frameworks to the multiverse view as developed by Hamkins. Keywords: axiomatisations, infinitesimal, nonstandard analysis, ultraproducts, superstructure, set-theoretic foundations, multiverse, naive integers, intuitionism, soritical properties, ideal elements, protozoa

    From Nonstandard Analysis to various flavours of Computability Theory

    Full text link
    As suggested by the title, it has recently become clear that theorems of Nonstandard Analysis (NSA) give rise to theorems in computability theory (no longer involving NSA). Now, the aforementioned discipline divides into classical and higher-order computability theory, where the former (resp. the latter) sub-discipline deals with objects of type zero and one (resp. of all types). The aforementioned results regarding NSA deal exclusively with the higher-order case; we show in this paper that theorems of NSA also give rise to theorems in classical computability theory by considering so-called textbook proofs.Comment: To appear in the proceedings of TAMC2017 (http://tamc2017.unibe.ch/

    On effective compactness and sigma-compactness

    Full text link
    Using the Gandy -- Harrington topology and other methods of effective descriptive set theory, we prove several theorems on compact and sigma-compact pointsets. In particular we show that any Σ11\Sigma^1_1 set AA of the Baire space NNN^N either is covered by a countable union of compact Δ11\Delta^1_1 sets, or AA contains a subset closed in NNN^N and homeomorphic to NNN^N (and then AA is not covered by a sigma-compact set, of course)

    Cauchy's infinitesimals, his sum theorem, and foundational paradigms

    Full text link
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy's proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy's proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy's proof closely and show that it finds closer proxies in a different modern framework. Keywords: Cauchy's infinitesimal; sum theorem; quantifier alternation; uniform convergence; foundational paradigms.Comment: 42 pages; to appear in Foundations of Scienc

    Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics

    Get PDF
    We examine some of Connes' criticisms of Robinson's infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes' own earlier work in functional analysis. Connes described the hyperreals as both a "virtual theory" and a "chimera", yet acknowledged that his argument relies on the transfer principle. We analyze Connes' "dart-throwing" thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being "virtual" if it is not definable in a suitable model of ZFC. If so, Connes' claim that a theory of the hyperreals is "virtual" is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren't definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in his Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes' criticism of virtuality. We analyze the philosophical underpinnings of Connes' argument based on Goedel's incompleteness theorem, and detect an apparent circularity in Connes' logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace (featured on the front cover of Connes' magnum opus) and the Hahn-Banach theorem, in Connes' own framework. We also note an inaccuracy in Machover's critique of infinitesimal-based pedagogy.Comment: 52 pages, 1 figur
    corecore